Optical Character Recognition

As you read these words on your computer screen, your eyes and brain are carrying out optical character recognition without you even noticing! Your eyes are recognizing the patterns of light and dark that make up the characters (letters, numbers, and things like punctuation marks) printed on the screen and your brain is using those to figure out what I’m trying to say (sometimes by reading individual characters but mostly by scanning entire words and whole groups of words at once).

Computers can do this too, but it’s really hard work for them. The first problem is that a computer has no eyes, so if you want it to read something like the page of an old book, you have to present it with an image of that page generated with an optical scanner or a digital camera. The page you create this way is a graphic file (often in the form of a JPG) and, as far as a computer’s concerned, there’s no difference between it and a photograph of the Taj Mahal or any other graphic: it’s a completely meaningless pattern of pixels (the colored dots or squares that make up any computer graphic image). In other words, the computer has a picture of the page rather than the text itself—it can’t read the words on the page like we can, just like that. OCR is the process of turning a picture of text into text itself—in other words, producing something like a TXT or DOC file from a scanned JPG of a printed or handwritten page.

If everyone wrote the letter A exactly the same way, getting a computer to recognize it would be easy. You’d just compare your scanned image with a stored version of the letter A and, if the two matched, that would be that. Kind of like Cinderella: “If the slipper fits…”

So how do you get everyone to write the same way? Back in the 1960s, a special font called OCR-A was developed that could be used on things like bank checks and so on. Every letter was exactly the same width (so this was an example of what’s called a monospace font) and the strokes were carefully designed so each letter could easily be distinguished from all the others. Check-printers were designed so they all used that font, and OCR equipment was designed to recognize it too. By standardizing on one simple font, OCR became a relatively easy problem to solve. The only trouble is, most of what the world prints isn’t written in OCR-A—and no-one uses that font for their handwriting! So the next step was to teach OCR programs to recognize letters written in a number of very common fonts (ones like Times, Helvetica, Courier, and so on). That meant they could recognize quite a lot of printed text, but there was still no guarantee they could recognize any font you might send their way.

Also known as feature extraction or intelligent character recognition (ICR), this is a much more sophisticated way of spotting characters. Suppose you’re an OCR computer program presented with lots of different letters written in lots of different fonts; how do you pick out all the letter As if they all look slightly different? You could use a rule like this: If you see two angled lines that meet in a point at the top, in the center, and there’s a horizontal line between them about halfway down, that’s a letter A. Apply that rule and you’ll recognize most capital letter As, no matter what font they’re written in. Instead of recognizing the complete pattern of an A, you’re detecting the individual component features (angled lines, crossed lines, or whatever) from which the character is made. Most modern omnifont OCR programs (ones that can recognize printed text in any font) work by feature detection rather than pattern recognition.

Leave a Reply

Theme by Anders Norén